

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 124 (2003) 229-232

www.elsevier.com/locate/jfluchem

Short communication

1-Fluoro-2,4,6-trichloro-1,3,5-triazinium tetrafluoroborate: synthesis, characterization, and ability to effect electrophilic aromatic substitution

R. Eric Banks^{a,1}, Mohamed K. Besheesh^a, Wolfgang Fraenk^b, Thomas M. Klapötke^{b,*}

^aDepartment of Chemistry, UMIST, P.O. Box 88, Manchester M60 1QD, UK

^bDepartment of Chemistry, Ludwig-Maximilians University of Munich, Butenandtstrasse 5–13 (D), D-81377 Munich, Germany

Received 11 July 2003; received in revised form 27 August 2003; accepted 30 August 2003

Abstract

The synthesis of 1-fluoro-2,4,6-trichloro-1,3,5-triazinium tetrafluoroborate, $[(ClCN)_3F]^+[BF_4]^-(1)$, from $(ClCN)_3$, BF₃ and F₂ is reported. Compound **1** was shown to be a useful reagent for the quantitative fluorination of aromatic substrates such as benzene, chlorobenzene, nitrobenzene, and methoxybenzene.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Electrophilic fluorination; N-F reagents; Fluorine; Fluoroaromatics; Trichlorotriazinium salts

1. Introduction

Although details of the synthesis and characterization of the first N-fluoro-sym-triazinium salts were published in the early 1990s [1-4] no information appears to have been reported concerning their use as electrophilic fluorinating agents [5].² To provide a quantitative scale for the oxidizing strength of these oxidative fluorinators we previously computed the FPDE values (fluorine-plus detachment energy values) quantum-chemically at the DFT B3LYP hybrid level of theory at a 6-31G(d,p) basis [6]. Recently [6] we also indicated the potential of 1-fluoro-2,4,6-trichloro-1,3,5-triazinium tetrafluoroborate, $[(ClCN)_3F]^+[BF_4]^-$ (1), as a reagent for effecting electrophilic ring-fluorination of carboaromatic compounds. The experimentation involved, now detailed here, provides (to the best of our knowledge) the first examples of C-F bond synthesis via the agency of an N-fluorotriazinium salt.

2. Results and discussion

1-Fluoro-2,4,6-trichloro-1,3,5-triazinium tetrafluoroborate (1) was prepared in excellent yield by adapting the small-scale

batch method employed originally [1,2] to convert cyanuric chloride to the corresponding *N*-fluorotriazinium hexafluoroarsenate, $[(CICN)_3F]^+[AsF_6]^-$ (2), boron trifluoride being used in place of arsenic pentafluoride to provide the anionic moiety (Scheme 1). The tetrafluoroborate 1 is a brilliant white, moisture-sensitive solid (hence best manipulated in a dry-box under Ar or N₂) which decomposes at 153–155 °C when heated progressively in a melting point apparatus. Like its hexafluoroarsenate analogue [1], 1 is insoluble in CFCl₃ but readily soluble in liquified SO₂; it is also quite soluble in acetonitrile and in nitromethane but reacts slowly with the former at room temperature, hence our interest in the nitroalkane as a solvent (see Section 2.1).

In view of the disorder problem encountered during an X-ray diffraction study of the hexafluoroarsenate **2** [1,2], no attempt has been made to undertake similar work with $[(ClCN)_3F]^+[BF_4]^-$ (1) (complete reliable experimental X-ray data are available for only one *N*-fluoro-*sym*-triazinium salt, namely 1-fluoro-2,4,6-trimethoxy-1,3,5-triazinium hexafluoroantimonate [7]). The identity of this new salt rests, therefore, on its mode of synthesis, a good elemental analysis (C, B, N), NMR data, and its ability to act as a fluorine-plus (F⁺) source.

The ¹⁹F NMR spectrum of **1**, measured at 25 °C in SO₂, comprises an absorption at δ (CFCl₃) –141.7 (assignable to BF₄⁻) and one of one-quarter relative intensity shifted to lower field at δ (CFCl₃) +18.3, which is reasonable for the cationic ⁺NF moiety in **1**. The corresponding δ values for a solution of **1** in CD₃CN at -20 °C are -143.6 and

^{*} Corresponding author. Tel.: +49-89-2180-77491;

fax: +49-89-2180-77492.

E-mail address: tmk@cup.uni-muenchen.de (T.M. Klapötke). ¹Fax: +44-161-285-1031.

 $^{^{2}}$ For recent in-depth reviews of electrophilic fluorinating agents of the N-F class, see [5].

Scheme 1.

+17.3 ppm (Table 1). The previously reported value of -45.2 ppm for the hexafluoroarsenate [(ClCN)₃F]⁺[AsF₆]⁻ (2) [1] is presumably incorrect due to decomposition of the sample.

2.1. Electrophilic fluorination of aromatics with 1-fluoro-2,4,6-trichloro-1,3,5-triazinium tetrafluoroborate (1)

Small-scale individual (i.e. no competitive runs were performed) reactions between **1** and benzene, methoxybenzene, chlorobenzene, and nitrobenzene were carried out, the objective being simply to estimate the N–F reagent's F⁺ transfer capability. Reaction mixtures were monitored using ¹⁹F NMR and by checking their abilities to liberate iodine from aqueous potassium iodide.

Initially, NMR-scale experiments were conducted in acetonitrile- d_3 with equimolar reactant ratios. Relative reaction rates ($C_6H_5OCH_3 \gg C_6H_6 \gg C_6H_5NO_2$) and orientation of attack (C₆H₅OCH₃ \rightarrow 2:1 mixture of 4 and 2FC₆H₄OCH₃; $C_6H_5NO_2 \rightarrow 3FC_6H_4NO_2$) consistent with electrophilic aromatic fluorination were established, but the ¹⁹F NMR spectra of all the reaction mixtures contained a substantial number of unassignable absorptions in addition to those associated with "F⁺" attack on the aromatics under study. This problem was resolved by dissolving the N-fluorotriazinium salt 1 in CD₃CN at room temperature and measuring the ¹⁹F NMR spectrum (probe temperature 27 °C) of the solution immediately: the spectrum contained two major peaks assignable to 1 [δ (CFCl₃) 15.3 ppm (⁺NF), -146.7 ppm (BF₄⁻)] and minor absorptions in the range -1.0 to -110 ppm; the latter, which corresponded with absorptions found in the spectra of reaction mixtures involved in the fluorination of benzene and its derivatives

Table 1 NMR data for $[(ClCN)_3F]^+[BF_4]^- (1)^a$

	¹¹ B	¹³ C	^{14}N	¹⁹ F
Reference δ (ppm) δ (ppm)	$BF_3 \cdot Oet_2 + 1.0$	TMS +173.4 (1) +158.3 (2)	$\frac{\text{MeNO}_2}{-98^{\text{b}}}$	CFCl ₃ -143.6 (4) +17.3 (1)

^a CD₃CN solution, -20 °C; relative intensities in parentheses.

^b One resonance due to fast N-F exchange.

with 1, increased noticeably in overall intensity during the next 2 h at the expense of the ⁺NF absorption at δ 15.3, and the initially colourless solution turned yellow.

Nitromethane (bp 101 °C), which has not to our knowledge featured previously in work with N–F reagents, proved to be a satisfactory replacement for acetonitrile, and reactions between **1** and our chosen aromatic substrates were effected in this solvent, even at elevated temperatures, without the complication experienced when using CD₃CN. Hence diversion of **1** down unwanted reaction channels was eliminated (no attempt has yet been made to determine the chemistry involved in attack of **1** on acetonitrile (possibly the formation of $[CH_3C = NF]^+$ occurs initially); the onset of reaction occurs at temperatures above ca. 0 °C (determined using temperatureprogrammed ¹⁹F NMR)).

The results achieved using dilute solutions of 1 and an aromatic subtrate (6.8 μ mol l⁻¹ of **1** and of C₆H₅X (X = H, OCH₃, Cl, NO₂)) in nitromethane reinforced our conclusion based on the experiments conducted using acetonitrile as solvent that it is a more powerful electrophilic fluoromating agent than most of the "F⁺" equivalents of the N-F class reported to date. In this respect, while 1 falls well short of the inorganic N-F reagents $NF_4^+X^-$ (X⁻ = BF₄⁻, AsF₆⁻, SbF_6^-) and $FN_2^+AsF_6^-$, which electrophilically fluorinate nitrobenzene in anhydrous HF at -78 °C [8,9] and methane in HF or pyridine-HF at room temperature [10], it appears to be at least as reactive as N-fluorobis(trifluoromethylsulfonyl)imide (3) and N-fluoropentachloropyridinium triflate (4), hitherto judged to be the most powerful F^+ delivery agents of the organic N-F class [11]. These two reagents (3, 4) fluorinate benzene and its activated derivative $C_6H_5OCH_3$ under mild conditions, as does 1, but neither has been demonstrated to attack deactivated benzenes under non-forcing conditions (3 [12]: C₆H₅Cl/CDCl₃, 22 °C, 24 h; C₆H₅COCH₃/CDCl₃, 22 °C, 12 h; neat C₆H₅NO₂, 22 °C, 12 h and 4 [13]: C₆H₅CO₂CH₃/CH₂Cl₂, 2 h, reflux temperature). By contrast, $[(ClCN)_3F]^+[BF_4^-]$ (1) attacks chlorobenzene and (more slowly) nitrobenzene at ambient temperature in nitromethane, consumption of the reagent being complete (negative KI test) within 6 h at 70 °C in the case of the chloro-aromatic (\rightarrow a ca. 1:0.3:2 mixture of 2, 3, and $4FC_6H_4Cl)$ and 90% (by ^{19}F NMR) under the same conditions with nitrobenzene (\rightarrow a ca. 2:0.8 mixture of 3

Scheme 2. Electrophilic fluorination reactions of $[(CICN)_3F]^+[BF_4]^-$ (1) in dry nitromethane. After ca. 6 h the consumption of reagent 1 was complete, indicating a quantitative reaction. The relative molar ratios of the products formed are given in parentheses.

and $2FC_6H_4NO_2$) Since a swift exothermic reaction occurs between methoxybenzene and 1 at room temperature, solutions containing these reactants in CD₃CN or CH₃NO₂ were prepared at -20 °C (this precaution does not appear to have been necessary in the cases of fluorination with 3 [12] or 4 [13]). When allowed to warm up to room temperature, the colourless solutions turned yellow at about 0 °C then became brownish-violet during the next 2 h, by which time 1 had been completely consumed (negative KI test) and 4 and $2FC_6H_4OCH_3$ were present in the ratio of 2:1 (Scheme 2).

3. Experimental

3.1. General experimental procedures

Raman and NMR data for $[(s-ClCN)_3F]^+[BF_4]$ (1) were obtained using a Perkin-Elmer 2000 NIR FT instrument and a Jeol Eclipse 400 spectrometer, respectively; ¹⁹NMR analysis of reaction mixtures produced via the interaction of **1** with benzene and its derivatives was performed with a Bruker AC-200 machine (188.8 MHz). Elemental analyses were performed with a Vario EL analyser (for C and N) and by ICP (for B). The mp of **1** was determined using a Büchi B-540 apparatus.

3.2. Caution

The safe handling of elemental fluorine requires a high level of expertise and special apparatus [14]. Only experimentalists with appropriate know-how and equipment, plus facilities for dealing with F_2 and HF burns [14], should attempt to prepare **1**.

Care must be taken when using nitromethane to avoid accidents arising from inhalation of its vapour, fire and explosion [15].

3.3. Preparation of 1-fluoro-2,4,6-trichloro-1,3,5triazinium tetrafluoroborate (1)

Several reactions were carried out on a 4–5 mmol scale. In a typical experiment, boron trifluoride (0.271 g, 4.0 mmol) and difluorine (0.151 g, 4.0 mmol) were condensed separately, in vacuo, onto a frozen solution of cyanuric chloride (0.738 g, 4.0 mmol) in trichlorofluoromethane (20 cm³) contained in a pre-passivated (with F₂) T316 stainless steel autoclave (120 cm³) cooled to -196 °C (liq. N₂). The reaction vessel was sealed, warmed to room temperature during 3 h, then stored at that point for 5 days (an excessive time). Volatile material was removed from the reaction vessel under vacuum, leaving a white residual solid that was shown to be virtually pure 1-fluoro-2,4,6-trichloro-1,3,5-triazinium tetrafluoroborate (nc) (1; 1.10 g, 3.8 mmol, 95% yield), mp (decomp.) 153–155 °C. Anal. Calcd. for C₃BCl₃F₅N: C, 12.42; B, 3.72, N, 14.47: Found. C, 12.40; B, 3.58; N, 14.61%. ¹⁹F NMR (376.0 MHz, CD₃CN at -20 °C; CFCl₃ ref.): δ 17.3 (s, 1F, NF), -143.6 (s, 4F, BF₄). ¹³C NMR (67.9 MHz, CD₃CN at -20 °C; TMS): δ 173.4 (s, C-1), 158.3 (s, C-3.5).

3.4. Fluorination of aromatic substrates with 1-fluoro-2,4,6-trichloro-1,3,5-triazinium tetrafluoroborate (1)

3.4.1. In CD₃CN

Cold (0 °C) solutions of the aromatic substrates under study in CD₃CN were added to weighed amounts of **1** contained in a Pyrex vials under argon in a dry-box to provide 1:1 molar reaction mixtures in the cases of benzene, chlorobenzene, and nitrobenzene, and both 1:1 and 1:2 (**1**: $C_6H_5OCH_3$) in the case of methoxybenzene. Reaction mixtures were then allowed to warm to room temperature before samples were transferred by syringe to standard stoppered NMR tubes and their ¹⁹F spectra measured.

3.4.2. In CH₃NO₂

Solutions containing equimolar quantities of **1** (0.1 g, 0.34 mmol) and an aromatic substrate in nitromethane (20 cm³) were prepared at room temperature (for benzene, chlorobenzene and nitrobenzene) or -20 °C (for methoxybenzene) in a dry-box under argon. Samples of the solutions were transferred to standard stoppered NMR tubes for ¹⁹F NMR analysis; samples were also tested for unreacted **1** using KI. Some reaction mixtures were heated (water bath) to 70 °C (in sealed NMR tubes) to drive the fluorination to completion.

Acknowledgements

Financial support by the University of Munich (LMU), UMIST and the Fonds der Chemischen Industrie are gratefully acknowledged. We thank Ms. Carmen Nowak for preparing the diagrams and figures.

References

- P.V.R. Schleyer, P. Buzek, T.M. Klapötke, I.C. Tornieporth-Oetting, M. Broschag, J.C. Picardt, Inorg. Chem. 32 (1993) 1523.
- [2] M. Broschag, T.M. Klapötke, A. Schulz, I.C. Tornieporth-Oetting, P. Umbach, P.S. White, Z. Anorg. Allg. Chem. 620 (1994) 1132.
- [3] A. Schulz, T.M. Klapötke, J. Organometal Chem. 480 (1994) 195.
- [4] M. Broschag, T.M. Klapötke, I.C. Tornieporth-Oetting, Inorg. Chem. Acta 205 (1993) 167.
- [5] G.S. Lal, G.P. Pez, R.G. Syvret, Chem. Rev. 96 (1996) 1737; C.G. Furin, in: B. Baasner, H. Hagemann, J.C. Tatlow (Eds.), Methods of Organic Chemistry (Houben-Weyl): Organo-Fluorine Compounds, vol. E10a, 1999, pp. 432–499.
- [6] W. Fraenk, T.M. Klapötke, R.E. Banks, M.K. Besheesh, J. Fluorine Chem. 108 (2001) 87–90.
- [7] R.E. Banks, M.K. Besheesh, R.G. Pritchard, Acta Cryst. C59 (2003) m141-m143.
- [8] C.J. Schack, K.O. Christe, J. Fluorine Chem. 18 (1981) 363-373.
- [9] G.A. Olah, K. Laali, M. Farnia, J. Shih, B.P. Singh, C.J. Schack, K.O. Christe, J. Org. Chem. 50 (1985) 1339–1341.
- [10] G.A. Olah, N. Hartz, G. Rasul, Q. Wang, G.K.S. Prakash, J. Casanova, K.O. Christe, J. Am. Chem. Soc. 116 (1994) 5671–5673.
- [11] G.S. Lal, G.P. Pez, R.G. Syvret, Chem. Rev. 96 (1996) 1737–1755.
 [12] S. Singh, D.D. DesMarteau, S.S. Zuberi, M. Witz, H.-N. Huang, J.
- Am. Chem. Soc. 109 (1987) 7194–7196.
- [13] T. Umemoto, S. Fukami, G. Tonizawa, K. Harasawa, K. Kawada, K. Tomita, J. Am. Chem. Soc. 112 (1990) 8563–8575.
- [14] Prudent Practices in the Laboratory: Handling and Disposal of Chemicals, National Research Council, National Academy Press, Washington, DC, 1995 (ISBN: 0-309-05229-7).
- [15] International Chemical Safety Cards, No. 0522 (see http://siri-org/ msds/mf/cards/file/0522.html).